Chapter 12

The Chi-Squared Test
for a Distribution

By now, you should be reasonably familiar with the notion of limiting distributions.
These are the functions that describe the expected distribution of results if an experi-
ment is repeated many times. There are many different limiting distributions, corres-
ponding to the many different kinds of experiments possible. Perhaps the three most
important limiting distributions in physical science are the three we have already
discussed: the Gauss (or normal) function, the binomial distribution, and the Poisson
distribution.

This final chapter focuses on how to decide whether the results of an actual
experiment are governed by the expected limiting distribution. Specifically, let us
suppose that we perform some experiment for which we believe we know the ex-
pected distribution of results. Suppose further that we repeat the experiment several
times and record our observations. The question we now address is this: How can
we decide whether our observed distribution is consistent with the expected theoreti-
cal distribution? We will see that this question can be answered using a simple
procedure called the chi-squared, or x?, test. (The Greek letter y is spelled “chi”
and pronounced “kie.”)

12.1  Introduction to Chi Squared

Let us begin with a concrete example. Suppose we make 40 measurements x, . . . ,
x40 of the range x of a projectile fired from a certain gun and get the results shown
in Table 12.1. Suppose also we have reason to believe these measurements are
governed by a Gauss distribution Gy ,(x), as is certainly very natural. In this type

Table 12.1. Measured values of x (in cm).

731 772 771 681 722 688 653 757 733 742
739 780 709 676 760 748 672 687 766 645
678 748 689 810 805 778 764 753 709 675
698 770 754 830 725 710 738 638 787 712
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of experiment, we usually do not know in advance either the center X or the width
o of the expected distribution. Our first step, therefore, is to use our 40 measure-
ments to compute best estimates for these quantities:

(best estimate for X) = x = % = 730.1 cm (12.1)
and
— 7\2
(best estimate for o) = g(ngx) — 468 cm. (12.2)

Now we can ask whether the actual distribution of our results xy, ..., x4 is
consistent with our hypothesis that our measurements were governed by the Gauss
distribution Gy ,(x) with X and o as estimated. To answer this question, we must
compute how we would expect our 40 results to be distributed if the hypothesis is
true and compare this expected distribution with our actual observed distribution.
The first difficulty is that x is a continuous variable, so we cannot speak of the
expected number of measurements equal to any one value of x. Rather, we must
discuss the expected number in some interval a < x < b. That is, we must divide
the range of possible values into bins. With 40 measurements, we might choose bin
boundaries at X — o, X, and X + o, giving four bins as in Table 12.2.

Table 12.2. A possible choice of bins for the data of Table 12.1. The final
column shows the number of observations that fell into each bin.

Bin number Observations
k Values of x in bin O,
1 x < X-o (orx < 683.3) 8
2 X—-oc<x<X (or 683.3 < x < 730.1) 10
3 X <x<X+o (or 730.1 < x < 776.9) 16
4 X+o0o<x (or 7769 < x) 6

We will discuss later the criteria for choosing bins. In particular, they must be
chosen so that all bins contain several measured values x;. In general, I will denote
the number of bins by #; for this example with four bins, n = 4.

Having divided the range of possible measured values into bins, we can now
formulate our question more precisely. First, we can count the number of measure-
ments that fall into each bin k. We denote this number by O, (where O stands for
“observed number”). For the data of our example, the observed numbers O, O,,
0O, O, are shown in the last column of Table 12.2. Next, assuming our measure-
ments are distributed normally (with X and o as estimated), we can calculate the
expected number E, of measurements in each bin k. We must then decide how well
the observed numbers O, compare with the expected numbers E,.

'If a measurement falls exactly on the boundary between two bins, we can assign half a measurement to
each bin.
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Prob, Prob,
Prob, | Prob,
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Figure 12.1. The probabilities Prob, that a measurement falls into each of the bins, k = 1, 2,
3, 4, of Table 12.2 are the four areas shown under the Gauss function.

The calculation of the expected numbers E, is quite straightforward. The proba-
bility that any one measurement falls in an interval a <x < b is just the area under
the Gauss function between x = a and x = b. In this example, the probabilities
Prob,, Prob,, Probs, Prob, for a measurement to fall into each of our four bins are
the four areas indicated in Figure 12.1. The two equal areas Prob, and Prob, to-
gether represent the well-known 68%, so the probability for falling into one of the
two central bins is 34%; that is, Prob, = Prob; = 0.34. The outside two areas com-
prise the remaining 32%; thus Prob, = Prob, = 0.16. To find the expected numbers
E,, we simply multiply these probabilities by the total number of measurements,
N = 40. Therefore, our expected numbers are as shown in the third column of Table
12.3. That the numbers E, are not integers serves to remind us that the “expected
number” is not what we actually expect in any one experiment; it is rather the
expected average number after we repeat our whole series of measurements many
times.

Our problem now is to decide how well the expected numbers E, do represent
the corresponding observed numbers O, (in the last column of Table 12.3). We

Table 12.3. The expected numbers E, and the observed numbers O,
for the 40 measurements of Table 12.1, with bins chosen as in Table

12.2.
Bin number Probability Expected number Observed number
k Prob, E, = NProb, Oy
1 16% 6.4 8
2 34% 13.6 10
3 34% 13.6 16
4 16% 6.4 6

would obviously not expect perfect agreement between E, and O, after any finite
number of measurements. On the other hand, if our hypothesis that our measure-
ments are normally distributed is correct, we would expect that, in some sense, the
deviations

0, — E, (12.3)

would be small. Conversely, if the deviations O, — E, prove to be large, we would
suspect our hypothesis is incorrect.
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To make precise the statements that the deviation O, — E, is “small” or “large,”
we must decide how large we would expect O, — E, to be if the measurements
really are normally distributed. Fortunately, this decision is easily made. If we imag-
ine repeating our whole series of 40 measurements many times, then the number O,
of measurements in any one bin k can be regarded as the result of a counting
experiment of the type described in Chapter 11. Our many different answers for O,
should have an average value of E; and would be expected to fluctuate around E,
with a standard deviation of order \/E_k Thus, the two numbers to be compared are
the deviation O, — E, and the expected size of its fluctuations \/E—k

These considerations lead us to consider the ratio

0, — E,
\E,

For some bins £, this ratio will be positive, and for some negative; for a few &, it
may be appreciably larger than one, but for most it should be of order one, or
smaller. To test our hypothesis (that the measurements are normally distributed), it
is natural to square the number (12.4) for each k and then sum over all bins
k=1,..., n (here n = 4). This procedure defines a number called chi squared,

(12.4)

n 2
I Y L 3 EJ. (12.5)
k=1 k

This number x? is clearly a reasonable indicator of the agreement between the
observed and expected distributions. If y? = 0, the agreement is perfect; that is,
O, = E, for all bins k, a situation most unlikely to occur. In general, the individual
terms in the sum (12.5) are expected to be of order one, and there are n terms in

the sum. Thus, if

(x? of order n or less), the observed and expected distributions agree about as well
as could be expected. In other words, if y? =< n, we have no reason to doubt that
our measurements were distributed as expected. On the other hand, if

x> >n

(x? significantly greater than the number of bins), the observed and expected num-
bers differ significantly, and we have good reason to suspect that our measurements
were not governed by the expected distribution.

In our example, the numbers observed and expected in the four bins and their
differences are shown in Table 12.4, and a simple calculation using them gives

Xt = i (O — Ek)2

k=1 Ek
_ 6 (=367 @42 (047
6.4 136 136 6.4

1.80. (12.6)
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Table 12.4. The data of Table 12.1, shown here with the differences

Ok - Ek‘

Bin number Observed number Expected number Difference
k O, E, = NProb, O, — E,
1 8 6.4 1.6
2 10 13.6 -3.6
3 16 13.6 2.4
4 6 6.4 -0.4

Because the value of 1.80 for y? is less than the number of terms in the sum
(namely, 4), we have no reason to doubt our hypothesis that our measurements were
distributed normally.

Quick Check 12.1. Each of the 100 students in a class measures the time for
a ball to fall from a third-story window. They calculate their mean ¢ and stan-
dard deviation o, and then group their measurements into four bins, chosen as
in the example just discussed. Their results are as follows:
less than (f — o,): 19
between (7 — o) and # 30
between 7 and (¢ + o,): 37
more than (7 + o,): 14.
Assuming their measurements are normally distributed, what are the expected

numbers of measurements in each of the four bins? What is y2, and is there
reason to doubt that the measurements are distributed normally?

12.2  General Definition of Chi Squared

The discussion so far has focused on one particular example, 40 measurements of a
continuous variable x, which denoted the range of a projectile fired from a certain
gun. We defined the number y? and saw that it is at least a rough measure of
the agreement between our observed distribution of measurements and the Gauss
distribution we expected our measurements to follow. We can now define and use
x? in the same way for many different experiments.

Let us consider any experiment in which we measure a number x and for which
we have reason to expect a certain distribution of results. We imagine repeating the
measurement many times (N) and, having divided the range of possible results x
into n bins, k = 1, ..., n, we count the number O, of observations that actually fall
into each bin k. Assuming the measurements really are governed by the expected
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distribution, we next calculate the expected number E, of measurements in the kth
bin. Finally, we calculate x* exactly as in (12.5),

- (12.7)

The approximate significance of y? is always the same as in our previous example.
That is, if x* < n, the agreement between our observed and expected distributions
is acceptable; if y* >> n, there is significant disagreement.

The procedure for choosing the bins in terms of which x? is computed depends
somewhat on the nature of the particular experiment. Specifically, it depends on
whether the measured quantity x is continuous or discrete. I will discuss these two
situations in turn.

MEASUREMENTS OF A CONTINUOUS VARIABLE

The example discussed in Section 12.1 involved a continuous variable x, and
little more needs to be said. The only limiting distribution we have discussed for a
continuous variable is the Gauss distribution, but there are, of course, many different
distributions that can occur. For example, in many atomic and nuclear experiments,
the expected distribution of the measured variable x (actually an energy) is the
Lorentzian distribution

1

10 %
where X and 1y are certain constants. Another example of a continuous distribution,
mentioned in Problem 5.6, is the exponential distribution 1Te ~ 7 which gives the
probability that a radioactive atom (whose expected mean life is 7) will live for a
time ¢.

Whatever the expected distribution f(x), the total area under the graph of f(x)
against x is one, and the probability of a measurement between x = a and x = b is
just the area between a and b,

b
Prob(a <x<b) = fa fx) dx.

Thus, if the kth bin runs from x = a, to x = a, , ,, the expected number of measure-
ments in the kth bin (after N measurements in all) is

E, = N X Prob(a, <x<a,,,)

N f Zk“ £() d. (12.8)

When we discuss the quantitative use of the chi-squared test in Section 12.4,
we will see that the expected numbers E, should not be too small. Although there
is no definite lower limit, £, should probably be approximately five or more,

E, = 5. (12.9)
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We must therefore choose bins in such a way that E, as given by (12.8) satisfies
this condition. We will also see that the number of bins must not be too small. For
instance, in the example of Section 12.1, where the expected distribution was a
Gauss distribution whose center X and width o- were not known in advance, the chi-
squared test cannot work (as we will see) with less than four bins; that is, in this
example we needed to have

n = 4 (12.10)

Combining (12.9) and (12.10), we see that we cannot usefully apply the chi-squared
test to this kind of experiment if our total number of observations is less than about
20.

MEASUREMENT OF A DISCRETE VARIABLE

Suppose we measure a discrete variable, such as the now-familiar number of
aces when we throw several dice. In practice, the most common discrete variable is
an integer (such as the number of aces), and we will denote the discrete variable by
v instead of x (which we use for a continuous variable). If we throw five dice, the
possible values of vare v=20,1,..., 5, and we do not actually need to group the
possible results into bins. We can simply count how many times we got each of the
six possible results. In other words, we can choose six bins, each of which contains
just one result.

Nonetheless, it is often desirable to group several different results into one bin.
For instance, if we threw our five dice 200 times, then (according to the probabilities
found in Problem 10.11) the expected distribution of results is as shown in the first
two columns of Table 12.5. We see that here the expected numbers of throws giving
four and five aces are 0.6 and 0.03, respectively, both much less than the five or so
occurrences required in each bin if we want to use the chi-squared test. This diffi-
culty is easily remedied by grouping the results v = 3, 4, and 5 into a single bin.
This grouping leaves us with four bins, £k = 1, 2, 3, 4, which are shown with their
corresponding expected numbers E,, in the last two columns of Table 12.5.

Table 12.5. Expected occurrence of v aces (v = 0,
1,..., 5) after throwing five dice 200 times.

Expected Bin Expected
Result occurrences number k number E;
No aces 80.4 1 80.4
One 80.4 2 80.4
Two 322 3 322
Three 6.4
Four 0.6 } 4 7.0
Five 0.03

Having chosen bins as just described, we could count the observed occurrences
O, in each bin. We could then compute y? and see whether the observed and ex-
pected distributions seem to agree. In this experiment, we know that the expected
distribution is certainly the binomial distribution Bs ,4(v) provided the dice are true
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(so that p really is ). Thus, our test of the distribution is, in this case, a test of
whether the dice are true or loaded.

In any experiment involving a discrete variable, the bins can be chosen to con-
tain just one result each, provided the expected number of occurrences for each bin
is at least the needed five or so. Otherwise, several different results should be
grouped together into a single larger bin that does include enough expected occur-
rences.

OTHER FORMS OF CHI SQUARED

The notation y? has been used earlier in the book, in Equations (7.6) and (8.5);
it could also have been used for the sum of squares in (5.41). In all these cases, x*
is a sum of squares with the general form

, 2”: (observed value — expected Value)2. (12.11)

1 standard deviation

In all cases, x? is an indicator of the agreement between the observed and expected
values of some variable. If the agreement is good, x? will be of order n; if it is
poor, x* will be much greater than 7.

Unfortunately, we can use x? to test this agreement only if we know the ex-
pected values and the standard deviation, and can therefore calculate (12.11). Per-
haps the most common situation in which these values are known accurately enough
is the kind of test discussed in this chapter, namely, a test of a distribution, in which
E, is given by the distribution, and the standard deviation is \/E_k Nevertheless, the
chi-squared test is of very wide application. Consider, for example, the problem
discussed in Chapter 8, the measurement of two variables x and y, where y is ex-
pected to be some definite function of x,

y = f(x)

(such as y = A + Bx). Suppose we have N measured pairs (x;, y;), where the x; have
negligible uncertainty and the y; have known uncertainties o;. Here, the expected
value of y; is f(x;), and we could test how well y fits the function f(x) by calculating

N

=D ()’i _f(xi))z'

1 0;

All our previous remarks about the expected value of y? would apply to this num-
ber, and the quantitative tests described in the following sections could be used.
This important application will not be pursued here, because only rarely in the
introductory physics laboratory would the uncertainties ; be known reliably enough
(but see Problem 12.14).

2.3 Degrees of Freedom and Reduced Chi Squared

I have argued that we can test agreement between an observed and an expected
distribution by computing x? and comparing it with the number of bins used in
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collecting the data. A slightly better procedure, however, is to compare 2, not with
the number of bins #, but instead with the number of degrees of freedom, denoted
d. The notion of degrees of freedom was mentioned briefly in Section 8.3, and we
must now discuss it in more detail.

In general, the number of degrees of freedom d in a statistical calculation is
defined as the number of observed data minus the number of parameters computed
from the data and used in the calculation. For the problems considered in this chap-
ter, the observed data are the numbers of observations O, in the n bins, k =1, .. .,
n. Thus, the number of observed data is just n, the number of bins. Therefore, in
the problems considered here,

d = n—c,

where n is the number of bins and c¢ is the number of parameters that had to be
calculated from the data to compute the expected numbers E,. The number c is
often called the number of constraints, as 1 will explain shortly.

The number of constraints ¢ varies according to the problem under consider-
ation. Consider first the dice-throwing experiment of Section 12.2. If we throw five
dice and are testing the hypothesis that the dice are true, the expected distribution
of numbers of aces is the binomial distribution Bs ;5(v), where v =0, ..., 5 is the
number of aces in any one throw. Both parameters in this function—the number of
dice, five, and the probability of an ace,§—are known in advance and do not have
to be calculated from the data. When we calculate the expected number of occur-
rences of any particular v, we must multiply the binomial probability by the total
number of throws N (in our example, N = 200). This parameter does depend on the
data. Specifically, N is just the sum of the numbers O,

N = > 0, (12.12)
Thus, in calculating the expected results of our dice experiment, we have to calcu-
late just one parameter (N) from the data. The number of constraints is, therefore,
c = 1,
and the number of degrees of freedom is
d = n—1

In Table 12.5, the results of the dice experiment were grouped into four bins (that
is, n = 4), so that experiment had 3 degrees of freedom.

The equation (12.12) illustrates well the curious terminology of constraints and
degrees of freedom. Once the number N has been determined, we can regard (12.12)

as an equation that “constrains” the values of Oy, .. ., O,. More specifically, we can
say that, because of the constraint (12.12), only » — 1 of the numbers O, ..., O,
are independent. For instance, the first # — 1 numbers O,, ..., O, _; could take

any value (within certain ranges), but the last number O, would be completely
determined by Equation (12.12). In this sense, only » — 1 of the data are free to
take on independent values, so we say there are only » — 1 independent degrees of
freedom.

In the first example in this chapter, the range x of a projectile was measured 40

269



270

Chapter 12: The Chi-Squared Test for a Distribution

times (N = 40). The results were collected into four bins (# = 4) and compared
with what we would expect for a Gauss distribution Gy ,(x). Here, there were three
constraints and hence only one degree of freedom,

d=n—c=4-3 = 1.

The first constraint is the same as (12.12): The total number of observations N is
the sum of the observations O, in all the bins. But here there were two more con-
straints, because (as is usual in this kind of experiment) we did not know in advance
the parameters X and o of the expected Gauss distribution Gy ,(x). Thus, before we
could calculate the expected numbers E,, we had to estimate X and o using the data.
Therefore, there were three constraints in all, so in this example

d=n-3. (12.13)

Incidentally, this result explains why we had to use at least four bins in this experi-
ment. We will see that the number of degrees of freedom must always be one or
more, so, from (12.13), we clearly had to choose n = 4.

The examples considered here will always have at least one constraint (namely,
the constraint N = X O,, involving the total number of measurements), and there
may be one or two more. Thus, the number of degrees of freedom, d, will range
from n — 1 to n — 3 (in our examples). When # is large, the difference between n
and d is fairly unimportant, but when #» is small (as it often is, unfortunately), there
is obviously a significant difference.

Armed with the notion of degrees of freedom, we can now begin to make our
chi-squared test more precise. It can be shown (though I will not do so) that the
expected value of x? is precisely d, the number of degrees of freedom,

(expected average value of y?) = d. (12.14)

This important equation does not mean that we really expect to find x> = d after
any one series of measurements. It means instead that if we could repeat our whole
series of measurements infinitely many times and compute y? each time, the average
of these values of y? would be d. Nonetheless, even after just one set of measure-
ments, a comparison of y? with d is an indicator of the agreement. In particular, if
our expected distribution was the correct distribution, 2 would be very unlikely to
be a lot larger than d. Turning this statement around, if we find 2 >> d, we can
assert that our expected distribution was most unlikely to be correct.

We have not proved the result (12.14), but we can see that some aspects of the
result are reasonable. For example, because d = n — ¢, we can rewrite (12.14) as

(expected average value of x?) = n — c. (12.15)

That is, for any given n, the expected value of y? will be smaller when c is larger
(that is, if we calculate more parameters from the data). This result is just what we
should expect. In the example of Section 12.1, we used the data to calculate the
center X and width o of the expected distribution Gy ,(x). Naturally, because X and
o were chosen to fit the data, we would expect to find a somewhat better agreement
between the observed and expected distributions; that is, these two extra constraints
would be expected to reduce the value of y2. This reduction is just what (12.15)
implies.
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The result (12.14) suggests a slightly more convenient way to think about our
chi-squared test. We introduce a reduced chi squared (or chi squared per degree of
freedom), which we denote by ¥ 2 and define as

[ e e (12.16)

Because the expected value of x? is d, we see that the

~ (expected a\?crage value of ¥2) = 1. (12.17)

Thus, whatever the number of degrees of freedom, our test can be stated as follows:
If we obtain a value of 2 of order one or less, then we have no reason to doubt
our expected distribution; if we obtain a value of Y2 much larger than one, our
expected distribution is unlikely to be correct.

Quick Check 12.2.  For the experiment of Quick Check 12.1, what is the num-

ber of degrees of freedom, and what is the value of the reduced chi squared,

X

2.4 Probabilities for Chi Squared

Our test for agreement between observed data and their expected distribution is still
fairly crude. We now need a quantitative measure of agreement. In particular, we
need some guidance on where to draw the boundary between agreement and dis-
agreement. For example, in the experiment of Section 12.1, we made 40 measure-
ments of a certain range x whose distribution should, we believed, be Gaussian. We
collected our data into four bins, and found that x> = 1.80. With three constraints,
there was only one degree of freedom (d = 1), so the reduced chi squared, y2 =
x%/d, is also 1.80,

2 = 1.80.

The question is now: Is a value of ¥ = 1.80 sufficiently larger than one to rule out
our expected Gauss distribution or not?

To answer this question, we begin by supposing that our measurements were
governed by the expected distribution (a Gaussian, in this example). With this as-
sumption, we can calculate the probability of obtaining a value of y? as large as,
or larger than, our value of 1.80. Here, this probability turns out to be

Prob(x%?=1.80) =~ 18%,

as we will soon see. That is, if our results were governed by the expected distribu-
tion, there would be an 18% probability of obtaining a value of y¥? greater than or
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equal to our actual value 1.80. In other words, in this experiment a value of ¥ ? as
large as 1.80 is not at all unreasonable, so we would have no reason (based on this
evidence) to reject our expected distribution.

Our general procedure should now be reasonably clear. After completing any
series of measurements, we calculate the reduced chi squared, which we now denote
by ¥,2 (where the subscript o stands for “observed,” because Y, is the value actu-
ally observed). Next, assuming our measurements do follow the expected distribu-
tion, we compute the probability

Prob(¥? = X, (12.18)

of finding a value of y¥?2 greater than or equal to the observed value ¥, If this
probability is high, our value 2 is perfectly acceptable, and we have no reason to
reject our expected distribution. If this probability is unreasonably low, a value of
X2 as large as our observed ¥,? is very unlikely (if our measurements were distrib-
uted as expected), and our expected distribution is correspondingly unlikely to be
correct.

As always with statistical tests, we have to decide on the boundary between
what is reasonably probable and what is not. Two common choices are those already
mentioned in connection with correlations. With the boundary at 5%, we would say
that our observed value ¥,? indicates a significant disagreement if

Prob(¥? = x,2) < 5%,

and we would reject our expected distribution at the 5% significance level. If we
set the boundary at 1%, then we could say that the disagreement is highly significant
if Prob(¥2= X,%) < 1% and reject the expected distribution at the 1% signifi-
cance level.

Whatever level you choose as your boundary for rejection, the level chosen
should be stated. Perhaps even more important, you should state the probability
Prob(¥? = X,%), so that your readers can judge its reasonableness for themselves.

The calculation of the probabilities Prob( ¥ = ¥,>) is too complicated to de-
scribe in this book. The results can be tabulated easily, however, as in Table 12.6 or
in the more complete table in Appendix D. The probability of getting any particular
values of y 2 depends on the number of degrees of freedom. Thus, we will write the
probability of interest as Prob,(x = ¥,?) to emphasize its dependence on d.

The usual calculation of the probabilities Prob,(¥> = X,°) treats the observed
numbers O, as continuous variables distributed around their expected values E;
according to a Gauss distribution. In the problems considered here, O, is a discrete
variable distributed according to the Poisson distribution.> Provided all numbers
involved are reasonably large, the discrete character of the O, is unimportant, and
the Poisson distribution is well approximated by the Gauss function. Under these
conditions, the tabulated probabilities Prob,( x> = ¥,2) can be used safely. For this
reason, we have said the bins must be chosen so that the expected count E, in each
bin is reasonably large (at least five or so). For the same reason, the number of bins
should not be too small.

2] have argued that finding the number O, amounts to a counting experiment and hence that O, should
follow a Poisson distribution. If the bin k is too large, then this argument is not strictly correct, because the
probability of a measurement in the bin is not much less than one (which is one of the conditions for the
Poisson distribution, as mentioned in Section 11.1), so we must have a reasonable number of bins.
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Table 12.6. The percentage probability Prob,(X* = X,>) of obtaining a value of

X2 greater than or equal to any particular value .2, assuming the measurements

concerned are governed by the expected distribution. Blanks indicate probabilities
less than 0.05%. For a more complete table, see Appendix D.

Xo’
d 0 025 05 075 10 125 15 175 2 3 4 5 6

1 100 62 48 39 32 26 22 19 16 8 5 3 1

2 100 78 61 47 37 29 22 17 14 5 2 0.7 02

3 100 86 68 52 39 29 21 15 1 3 07 02 —

5 100 94 78 59 42 28 19 12 8 1 01 — —
10 100 99 &9 68 44 25 13 6 3 01 — - —
15 100 100 94 73 45 23 10 4 1 _ = —

With these warnings, we now give the calculated probabilities Prob,(X? = X,2)
for a few representative values of d and ¥,? in Table 12.6. The numbers in the left
column give six choices of d, the number of degrees of freedom (d = 1, 2, 3, 5, 10,
15). Those in the other column heads give possible values of the observed y,>. Each
cell in the table shows the percentage probability Prob,(¥? = ¥,?) as a function of
d and y,>. For example, with 10 degrees of freedom (d = 10), we see that the
probability of obtaining ¥ 2 = 2 is 3%,

Prob,(¥*=2) = 3%.

Thus, if we obtained a reduced chi squared of 2 in an experiment with 10 degrees
of freedom, we could conclude that our observations differed significantly from the
expected distribution and reject the expected distribution at the 5% significance level
(though not at the 1% level).

The probabilities in the second column of Table 12.6 are all 100%, because X2
is always certain to be greater than or equal to 0. As ¥, increases, the probability
of getting ¥ = ¥, diminishes, but it does so at a rate that depends on d. Thus,
for 2 degrees of freedom (d = 2), Prob,(¥>= 1) is 37%, whereas for d = 15,
Prob,(x*=1) is 45%. Note that Prob,(x* = 1) is always appreciable (at least
32%, in fact), so a value for y,? of 1 or less is perfectly reasonable and never
requires rejection of the expected distribution.

The minimum value of y,? that does require questioning the expected distribu-
tion depends on d. For 1 degree of freedom, we see that ¥,> can be as large as 4
before the disagreement becomes significant (5% level). With 2 degrees of freedom,
the corresponding boundary is x,2 = 3; for d = 5, it is closer to 2 (¥,* = 2.2, in
fact), and so on.

Armed with the probabilities in Table 12.6 (and Appendix D), we can now
assign a quantitative significance to the value of y,> obtained in any particular
experiment. Section 12.5 gives some examples.

Quick Check 12.3. Each student in a large class times a glider on an air track
as it coasts the length of the track. They calculate their mean time and standard
deviation and then divide their data into six bins. Assuming their measurements
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ought to be normally distributed, they calculate the numbers of measurements
expected in each bin and the reduced chi squared, for which they get 4.0. If
their measurements really were normally distributed, what would have been the
probability of getting a value of y? this large? Is there reason to think the
measurements were not normally distributed?

12.5 Examples

We have already analyzed rather completely the example of Section 12.1. In this
section, we consider three more examples to illustrate the application of the chi-
squared test.

Example: Another Example of the Gauss Distribution

The example of Section 12.1 involved a measurement for which the results were
expected to be distributed normally. The normal, or Gauss, distribution is so com-
mon that we consider briefly another example. Suppose an anthropologist is inter-
ested in the heights of the natives on a certain island. He suspects that the heights
of the adult males should be normally distributed and measures the heights of a
sample of 200 men. Using these measurements, he calculates the mean and standard
deviation and uses these numbers as best estimates for the center X and width pa-
rameter o of the expected normal distribution Gy ,(x). He now chooses eight bins,
as shown in the first two columns of Table 12.7, and groups his observations, with
the results shown in the third column.

Table 12.7. Measurements of the heights of 200 adult males.

Bin Heights Observed Expected
number k in bin number O, number E,
1 less than X — 1.50 14 13.4
2 between X — 1.5cand X — o 29 18.3
3 between X — o and X — 0.50 30 30.0
4 between X — 0.5¢0 and X 27 38.3
5 between X and X + 0.5¢ 28 38.3
6 between X + 0.50c and X + o 31 30.0
7 between X + o and X + 1.50 28 18.3
8 more than X + 1.5¢ 13 13.4

Our anthropologist now wants to check whether these results are consistent with
the expected normal distribution Gy ,(x). To this end, he first calculates the probabil-
ity Prob, that any one man has height in any particular bin & (assuming a normal
distribution). This probability is the integral of Gy ,(x) between the bin boundaries
and is easily found from the table of integrals in Appendix B. The expected number
E, in each bin is then Prob, times the total number of men sampled (200). These
numbers are shown in the final column of Table 12.7.
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To calculate the expected numbers E,, the anthropologist had to use three pa-
rameters calculated from his data (the total number in the sample and his estimates
for X and o). Thus, although there are eight bins, he had three constraints; so the
number of degrees of freedom is d = 8 — 3 = 5. A simple calculation using the data
of Table 12.7 gives for his reduced chi squared

8 _ 2
YU
dZ E;

Because this value is appreciably larger than one, we immediately suspect that the
islanders’ heights do not follow the normal distribution. More specifically, we see
from Table 12.6 that, if the islanders’ heights were distributed as expected, then the
probability Probs(x? = 3.5) of obtaining 2= 3.5 is approximately 0.5%. By
any standards, this value is very improbable, and we conclude that the islanders’
heights are very unlikely to be normally distributed. In particular, at the 1% (or
highly significant) level, we can reject the hypothesis of a normal distribution of
heights.

Example: More Dice

In Section 12.2, we discussed an experiment in which five dice were thrown many
times and the number of aces in each throw recorded. Suppose we make 200 throws
and divide the results into bins as discussed before. Assuming the dice are true, we
can calculate the expected numbers E, as before. These numbers are shown in the
third column of Table 12.8.

Table 12.8. Distribution of numbers of aces in 200 throws

of 5 dice.

Bin Results Expected Observed
number k in bin number E; number O,
1 no aces 80.4 60
2 one ace 80.4 88
3 two aces 322 39
4 3,4, or 5 aces 7.0 13

In an actual test, five dice were thrown 200 times and the numbers in the last
column of Table 12.8 were observed. To test the agreement between the observed
and expected distributions, we simply note that there are three degrees of freedom
(four bins minus one constraint) and calculate

i O =EP _ 41
P Ey

Referring back to Table 12.6, we see that with three degrees of freedom, the proba-
bility of obtaining ¥ * = 4.16 is approximately 0.7%, if the dice are true. We con-
clude that the dice are almost certainly not true. Comparison of the numbers E, and
O, in Table 12.8 suggests that at least one die is loaded in favor of the ace.
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Example: An Example of the Poisson Distribution

As a final example of the use of the chi-squared test, let us consider an experiment
in which the expected distribution is the Poisson distribution. Suppose we arrange a
Geiger counter to count the arrival of cosmic-ray particles in a certain region. Sup-
pose further that we count the number of particles arriving in 100 separate one-
minute intervals, and our results are as shown in the first two columns of Table
12.9.

Table 12.9. Numbers of cosmic-ray particles observed in 100 separate one-
minute intervals.

Counts v Bin Observations Expected
in one minute Occurrences number k O, in bin k number E;
None 7 1 7 7.5
One 17 2 17 19.4
Two 29 3 29 252
Three 20 4 20 21.7
Four 16 5 16 14.1
Five 8
Six ! 6 11 12.1
Seven
Eight or more 0

Total 100

Inspection of the numbers in column two immediately suggests that we group
all counts » =5 into a single bin. This choice of six bins (k= 1,..., 6) is shown
in the third column and the corresponding numbers O, in column four.

The hypothesis we want to test is that the number v is governed by a Poisson
distribution P,(v). Because the expected mean count g is unknown, we must first
calculate the average of our 100 counts. This value is easily found to be ¥ = 2.59,
which gives us our best estimate for w. Using this value u = 2.59, we can calculate
the probability P,() of any particular count v and hence the expected numbers E,
as shown in the final column.

In calculating the numbers E,, we used two parameters based on the data, the
total number of observations (100), and our estimate of u (u = 2.59). (Note that
because the Poisson distribution is completely determined by u, we did not have to
estimate the standard deviation ¢. Indeed, because o = \u, our estimate for u
automatically gives us an estimate for o.) There are, therefore, two constraints,
which reduces our six bins to four degrees of freedom, d = 4.

A simple calculation using the numbers in the last two columns of Table 12.9
now gives for the reduced chi squared

1 & (0, — E?

S2 k k

X = = E —— = 0.35.
d ;= E,

Because this value is less than one, we can conclude immediately that the agreement
between our observations and the expected Poisson distribution is satisfactory. More
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specifically, we see from the table in Appendix D that a value of ¥ as large as 0.35
is very probable; in fact

Prob,(¥*>=0.35) = 85%.

Thus, our experiment gives us absolutely no reason to doubt the expected Poisson
distribution.

The value of ¥2 = 0.35 found in this experiment is actually appreciably less
than one, indicating that our observations fit the Poisson distribution very well. This
small value does not, however, give stronger evidence that our measurements are
governed by the expected distribution than would a value y?= 1. If the results
really are governed by the expected distribution, and if we were to repeat our series
of measurements many times, we would expect many different values of y 2, fluctu-
ating about the average value one. Thus, if the measurements are governed by the
expected distribution, a value of ¥2 = 0.35 is just the result of a large chance fluc-
tuation away from the expected mean value. In no way does it give extra weight to
our conclusion that our measurements do seem to follow the expected distribution.

If you have followed these three examples, you should have no difficulty
applying the chi-squared test to any problems likely to be found in an elementary
physics laboratory. Several further examples are included in the problems below.
You should certainly test your understanding by trying some of them.

Principal Definitions and Equations of Chapter |2

DEFINITION OF CHI SQUARED

If we make n measurements for which we know, or can calculate, the expected
values and the standard deviations, then we define x? as

2 robserved value — expected value\2
oo 3 oty

standard deviation [See 12.11)]

1

In the experiments considered in this chapter, the n» measurements were the numbers,
0Oy, ..., 0,, of times that the value of some quantity x was observed in each of n
bins. In this case, the expected number E, is determined by the assumed distribu-
tion of x, and the standard deviation is just VE,; therefore,
oo S OB

-1 Ex [See (12.7)]
If the assumed distribution of x is correct, then x? should be of order n. If
x? >> n, the assumed distribution is probably incorrect.
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DEGREES OF FREEDOM AND REDUCED CHI SQUARED

If we were to repeat the whole experiment many times, the mean value of y?
should be equal to d, the number of degrees of freedom, defined as

d =n-—c

where c¢ is the number of constraints, the number of parameters that had to be
calculated from the data to compute 2.
The reduced x? is defined as

%2 = x¥d. [See (12.16)]

If the assumed distribution is correct, ¥ 2 should be of order 1; if ¥ >> 1, the data
do not fit the assumed distribution satisfactorily.

PROBABILITIES FOR CHI SQUARED

Suppose you obtain the value ¥,? for the reduced chi squared in an experiment.
If ¥,? is appreciably greater than one, you have reason to doubt the distribution on
which your expected values E, were based. From the table in Appendix D, you can
find the probability,

})"Obd(y2 = 202),

of getting a value Y ? as large as ¥,2, assuming the expected distribution is correct.
If this probability is small, you have reason to reject the expected distribution; if it
is less than 5%, you would reject the assumed distribution at the 5%, or significant,
level; if the probability is less than 1%, you would reject the distribution at the 1%,
or highly significant, level.

Problems for Chapter 12

For Section 12.1: Introduction to Chi Squared

12.1. % Each member of a class of 50 students is given a piece of the same metal
(or what is said to be the same metal) and told to find its density p. From the 50
results, the mean p and standard deviation o, are calculated, and the class decides
to test whether the results are normally distributed. To this end, the measurements
are grouped into four bins with boundaries at p — o0, p, and p + 0, and the
results are shown in Table 12.10.

Table 12.10. Observed densities of 50 pieces of metal
arranged in four bins; for Problem 12.1.

Bin number & Range of bin Observed number O,
1 less than p — o, 12
2 between p — o, and p 13
3 between p and p + o, 11
4 more than p + o, 14




