Chapter 4

General Properties of Radiation
Detectors

Before discussing the different types of radiation detectors individually, we first outline
some general properties that apply to all types. Included will be some basic definitions of
detector properties, such as efficiency and energy resolution, together with some general
modes of operation and methods of recording data that will be helpful in categorizing
detector applications. v

L. SIMPLIFIED DETECTOR MODEL

We begin with a hypothetical detector that is subject to some type of irradiation. Attention
is first focused on the interaction of a single particle or quantum of radiation in the detec-
tor, which might, for example, be a single alpha particle or an individual gamma-ray pho-
ton. In order for the detector to respond at all, the radiation must undergo interaction
through one of the mechanisms discussed in Chapter 2. As indicated by Eq. (2.3), the inter-
action or stopping time is very small (typically a few nanoseconds in gases or a few
picoseconds in solids). In most practical situations, these times are so short that the depo-
sition of the radiation energy can be considered instantaneous.

The net result of the radiation interaction in a wide category of detectors is the appear-
ance of a given amount of electric charge within the detector active volume.? Our simpli-
fied detector model thus assumes that a charge Q appears within the detector at time
t = O resulting from the interaction of a single particle or quantum of radiation. Next, this
charge must be collected to form the basic electrical signal. Typically, collection of the
charge is accomplished through the imposition of an electric field within the detector,
which causes the positive and negative charges created by the radiation to flow in
opposite directions. The time required to fully collect the charge varies greatly from one
detector to another. For example, in ion chambers the collection time can be as long
as a few milliseconds, whereas in semiconductor diode detectors the time is a few nanosec-
onds. These times reflect both the mobility of the charge carriers within the detector active
volume and the average distance that must be traveled before arrival at the collection
electrodes.

TStrictly true only for detectors such as ion chambers, proportional tubes, G-M tubes, or semiconductor diode
detectors. The discussion is also useful for detector types in which the charge is formed indirectly, as from a pho-
tomultiplier tube used with a scintillation crystal.
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/ O L/ We therefore begin with a model of a prototypical detector whose response to a single
particle or quantum of radiation will be a current that flows for a time equal to the charge
collection time. The sketch below illustrates one example for the time dependence the
detector current might assume, where ¢, represents the charge collection time.
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The time integral over the duration of the current must simply be equal to Q, the total
amount of charge generated in that specific interaction.

In any real situation, many quanta of radiation will interact over a period of time. If the
irradiation rate is high, situations can arise in which current is flowing in the detector from
more than one interaction at a given time. For purposes of the present discussion, we
assume that the rate is low enough so that each individual interaction gives rise to a cur-
rent that is distinguishable from ail others. The magnitude and duration of each current
pulse may vary depending on the type of interaction, and a sketch of the instantaneous cur-
rent flowing in the detector might then appear as shown in the sketch below.
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It is important to recall that, because the arrival of radiation quanta is a random phenom-
enon governed by Poisson statistics, the time intervals between successive current pulses
are also randomly distributed.

. MODES OF DETECTOR OPERATION

We can now introduce a fundamental distinction between three general modes of opera-
tion of radiation detectors. The three modes are called pulse mode, current mode, and mean
square voltage mode (abbreviated MSV mode, or sometimes called Campbelling mode).
Pulse mode is easily the most commonly applied of these, but current mode also finds many
applications. MSV mode is limited to some specialized applications that make use of its
unique characteristics. Although the three modes are operationally distinct, they are inter-
related through their common dependence on the sequence of current pulses that are the
output of our simplified detector model.

In pulse mode operation, the measurement instrumentation is designed to record each
individual quantum of radiation that interacts in the detector. In most common applica-
tions, the time integral of each burst of current, or the total charge Q, is recorded since the

energy deposited in the detector is directly related to Q. A s used to measure the

energy of individual radiation quanta must be operated in pulse mode. Such applications

are categorized as radiation spectroscopy and are the subject-of much of the remainder of

this text.
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In other circumstances, a simpler approach may suit the needs of the measurement: All
pulses above a low-level threshold are registered from the detector, regardless of the value
of Q. This approach is often called pulse counting, and we will show various examples later
in this text. It can be useful in many applications in which only the intensity of the radia-
tion is of interest, rather than sensing any changes in or information about the incident
energy distribution of the radiation.

At very high event rates, pulse mode operation becomes impractical or even impos-
sible. The time between adjacent events may become too short to carry out an adequate
analysis, or the current pulses from successive events may overlap in time. In such cases,
one can revert to alternative measurement techniques that respond to the time average
taken over many individual events. This approach leads to the remaining two modes of
operation: current mode and MSV mode.

In the sketch below, we show a current-measuring device (an ammeter or, more practically,
a picoammeter) connected across the output terminals of a radiation detector.
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If we assume that the measuring device has a fixed response time 7, then the record-
ed signal from a sequence of events will be a time-dependent current given by

I
I(t =?LTz(t)dt (4.1)

Because the response time T is typically long compared with the average time between
individual current pulses from the detector, the effect is to average out many of the fluctu-
ations in the intervals between individual radiation interactions and to record an average
current that depends on the product of the interaction rate and the charge per interaction.
In current mode, this time average of the individual current bursts serves as the basic sig-
nal that is recorded.

At any instant of time, however, there is a statistical uncertainty in this signal due to the
random fluctuations in the arrival time of the event. In many ways, the integration time 7' is
analogous to the measurement time discussed in the statistical analysis of the previous chap-
ter. Thus, the choice of large T will minimize statistical fluctuations in the signal but will also
slow the response to rapid changes in the rate or nature of the radiation interactions.

The average current is given by the product of the average event rate and the charge
produced per event.

E

Ih=rQ=r-q (42)



106 Chapter 4

General Properties of Radiation Detectors

where r = event rate
Q= Eq/W = charge produced for each event
E = average energy deposited per event

_ average energy required to produce a unit
~ charge pair (e.g., electron-ion pair)

g=16x10"19C

For steady-state irradiation of the detector, this average current can also be rewritten
as the sum of a constant current I, plus a time-dependent fluctuating component o(t), as
sketched below.

1)

t

Here o/(f) is a random time-dependent variable that occurs as a consequence of the ran-
dom nature of the radiation events interacting within the detector.

A statistical measure of this random component is the variance or mean square value,
defined as the time average of the square of the difference between the fluctuating current
I(t) and the average current I,. This mean square value is given by

—_ 1 1 [
oXt) = - ft O - Lpdr = ft ., oXt') dr’ (4.3)
and the standard deviation follows as

0,0 =V of(t) (4.4)

Recall from Poisson statistics that the standard deviation in the number of recorded
events n over a given observation period is expected to be

o, =Vn (4.5)

n

Therefore, the standard deviation in the number of events occurring at a rate r in an effec-
tive measurement time 7 is simply

o,=VrT (4.6)

If each pulse contributes the same charge, the fractional standard deviation in the meas-
ured signal due to random fluctuations in pulse arrival time is given by

o0 o, 1 7

Iy n VrT '

Here o,(¥) is the time average of the standard deviation in the measured current, where T
is the response time of the picoammeter and I is the average current read on the meter.
This result is useful in estimating the uncertainty associated with a given current mode
measurement.
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It should be noted that, in the derivation of Eq. (4.7), the charge produced in each
event (Q) is assumed to be constant. Therefore, the result accounts for only the random
fluctuations in pulse arrival time, but not for fluctuations in pulse amplitude. In some appli-
cations, however, this second source of variance in the signal is small in comparison with
the first, and the general character of the results given remains applicable.!

B. Mean Square Voltage Mode

C. Pulse Mode

An extension of this discussion of the statistical properties of the signal in current mode
leads us to the next general mode of operation: the mean square voltage (MSV) mode.
Suppose that we send the current signal through a circuit element that blocks the average
current Iy and only passes the fluctuating component o,(t). By providing additional signal-
processing elements, we now compute the time average of the squared amplitude of o;(t).
(The details of these circuits are not important here; for further discussion see Ref. 2.) The
processing steps are illustrated below:
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The result corresponds to the quantity olz(t) defined previously in Eq. (4.3). Combining
Eqgs. (4.2) and (4.7), we predict the magnitude of the signal derived in this way to be

- Q2
ot =

We see that this mean square signal is directly proportional to the event rate r and, more
significantly, proportional to the square of the charge Q produced in each event. An analy-
sis of this mode of operation was first given by Campbell,? and the term Campbelling mode
is therefore substituted for MSV mode in some usage.

The MSV mode of operation is most useful when making measurements in mixed
radiation environments when the charge produced by one type of radiation is much dif-
ferent than that from the second type. If simple current mode operation is chosen, the
measured current will linearly reflect the charges contributed by each type. In MSV mode,
however, the derived signal is proportional to the square of the charge per event. This oper-
ational mode will therefore further weight the detector response in favor of the type of
radiation giving the larger average charge per event. As one example of the useful appli-
cation of the MSV mode, in Chapter 14 we describe its use with neutron detectors in reac-
tor instrumentation to enhance the neutron signal compared with the response due to
smaller-amplitude gamma-ray events.

(4.8)

In reviewing various applications of radiation detectors, we find that current mode opera-
tion is used with many detectors when event rates are very high. Detectors that are applied
to radiation dosimetry are also normally operated in current mode for reasons that will be
discussed in Chapter 5. MSV mode is useful in enhancing the relative response to large-
amplitude events and finds widespread application in reactor instrumentation. Most appli-
cations, however, are better served by preserving information on the amplitude and timing
of individual events that only pulse mode can provide. Consequently, the remainder of this
chapter deals with various aspects of pulse mode operation.
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The nature of the signal pulse produced from a single event depends on the input char-

acteristics of the circuit to which the detector is connected (usually a preamplifier). The
equivalent circuit can often be represented as shown below.

O ‘j_ !
Detector c R Vi)
T % |

O

Here R represents the input resistance of the circuit, and C represents the equivalent
capacitance of both the detector itself and the measuring circuit. If, for example, a pream-
plifier is attached to the detector, then R is its input resistance and C is the summed capac-
itance of the detector, the cable used to connect the detector to the preamplifier, and the
input capacitance of the preamplifier itself. In most cases, the time-dependent voltage V(1)
across the load resistance is the fundamental signal voltage on which pulse mode operation
is based. Two separate extremes of operation can be identified that depend on the relative
value of the time constant of the measuring circuit. From simple circuit analysis, this time
constant is given by the product of R and C, or T = RC.

CASE 1. SMALL RC (1 << t,)

In this extreme the time constant of the external circuit is kept small compared with the
charge collection time, so that the current flowing through the load resistance R is essen-
tially equal to the instantaneous value of the current flowing in the detector. The signal
voltage V(t) produced under these conditions has a shape nearly identical to the time
dependence of the current produced within the detector as illustrated in Fig. 4.1b.
Radiation detectors are sometimes operated under these conditions when high event rates
or timing information is more important than accurate energy information.

CASE 2. LARGE RC (> 1t,)

It is generally more common to operate detectors in the opposite extreme in which the
time constant of the external circuit is much larger than the detector charge collection time.
In this case, very little current will flow in the load resistance during the charge collection
time and the detector current is momentarily integrated on the capacitance. If we assume
that the time between pulses is sufficiently large, the capacitance will then discharge
through the resistance, returning the voltage across the load resistance to zero. The corre-
sponding signal voltage V() is illustrated in Fig. 4.1c.

Because the latter case is by far the most common means of pulse-type operation of
detectors, it is important to draw some general conclusions. First, the time required for the
signal pulse to reach its maximum value is determined by the charge collection time within
the detector itself. No properties of the external or load circuit influence the rise time of the
pulses. On the other hand, the decay time of the pulses, or the time required to restore the
signal voltage to zero, is determined only by the time constant of the load circuit. The con-
clusion that the leading edge is detector dependent and the trailing edge circuit dependent is
a generality that will hold for a wide variety of radiation detectors operated under the con-
ditions in which RC >> ¢.. Second, the amplitude of a signal pulse shown as V. in Fig. 4.1c
is determined simply by the ratio of the total charge Q created within the detector during one
radiation interaction divided by the capacitance C of the equivalent load circuit. Because this
capacitance is normally fixed, the amplitude of the signal pulse is directly proportional to the
corresponding charge generated within the detector and is given by the simple expression

Vinax = Q/C (4.9)

Thus, the output of a detector operated in pulse mode normally consists of a sequence
of individual signal pulses, each representing the results of the interaction of a single quan-
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Figure 4.1 (a) The assumed current output from a hypothetical detector.
(b) The signal voltage V(z) for the case of a small time constant load circuit.
(c) The signal voltage V(z) for the case of a large time constant load circuit.

tum of radiation within the detector. A measurement of the rate at which such pulses occur
will give the corresponding rate of radiation interactions within the detector. Furthermore,
the amplitude of each individual pulse reflects the amount of charge generated due to each
individual interaction. We shall see that a very common analytical method is to record the
distribution of these amplitudes from which some information can often be inferred about
the incident radiation. An example is that set of conditions in which the charge Q is direct-
ly proportional to the energy of the incident quantum of radiation. Then, a recorded dis-
tribution of pulse amplitudes will reflect the corresponding distribution in energy of the
incident radiation.

As shown by Eq.(4.9), the proportionality between V., and Q holds only if the capac-
itance C remains constant. In most detectors, the inherent capacitance is set by its size and
shape, and the assumption of constancy is fully warranted. In other types (notably the semi-
conductor diode detector), the capacitance may change with variations in normal operat-
ing parameters. In such cases, voltage pulses of different amplitude may result from events
with the same Q. In order to preserve the basic information carried by the magnitude of O,
a type of preamplifier circuit known as a charge-sensitive configuration has come into wide-
spread use. As described in Chapter 17, this type of circuit uses feedback to largely elimi-
nate the dependence of the output amplitude on the value of C and restores proportional-
ity to the charge Q even in cases in which C may change.

Pulse mode operation is the more common choice for most radiation detector appli-
cations because of several inherent advantages over current mode. First, the sensitivity that
is achievable is often many factors greater than when using current or MSV mode because
each individual quantum of radiation can be detected as a distinct pulse. Lower limits of
detectability are then normally set by background radiation levels. In current mode, the
minimum detectable current may represent an average interaction rate in the detector that
is many times greater. The second and more important advantage is that each pulse ampli-
tude carries some information that is often a useful or even necessary part of a particular
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application. In both current and MSV mode operations, this information on individual
pulse amplitudes is lost and all interactions, regardless of amplitude, contribute to the
average measured current. Because of these inherent advantages of pulse mode, the empha-
sis in nuclear instrumentation is largely in pulse circuits and pulse-processing techniques.

II1. PULSE HEIGHT SPECTRA

When operating a radiation detector in pulse mode, each individual pulse amplitude car-
ries important information regarding the charge generated by that particular radiation
interaction in the detector. If we examine a large number of such pulses, their amplitudes
will not all be the same. Variations may be due either to differences in the radiation ener-
gy or to fluctuations in the inherent response of the detector to monoenergetic radiation.
The pulse amplitude distribution is a fundamental property of the detector output that is
routinely used to deduce information about the incident radiation or the operation of the
detector itself.

The most common way of displaying pulse amplitude information is through the dif-
ferential pulse height distribution. Figure 4.2a gives a hypothetical distribution for purpos-
es of example. The abscissa is a linear pulse amplitude scale that runs from zero to a value
larger than the amplitude of any pulse observed from the source. The ordinate is the dif-
ferential number dN of pulses observed with an amplitude within the differential ampli-
tude increment dH, divided by that increment, or dN/dH. The horizontal scale then has
units of pulse amplitude (volts), whereas the vertical scale has units of inverse amplitude
(volts~1). The number of pulses whose amplitude lies between two specific values, H; and
H,, can be obtained by integrating the area under the distribution between those two lim-
its, as shown by the cross-hatched area in Fig. 4.2a:

Leh)
number of pulses with amplitude between H; and H, = LI o™ dH (4.10)
1
The total number of pulses N, represented by the distribution can be obtained by inte-
grating the area under the entire spectrum:
N, A dH 4.11
 Jo dH (@11)

Most users of radiation instrumentation are accustomed to looking at the shape of the
differential pulse height distribution to display significant features about the source of the
pulses. The maximum pulse height observed (H;) is simply the point along the abscissa at
which the distribution goes to zero. Peaks in the distribution, such as at H,, indicate pulse
amplitudes about which a large number of pulses may be found. On the other hand, valleys
or low points in the spectrum, such as at pulse height A5, indicate values of the pulse ampli-
tude around which relatively few pulses occur. The physical interpretation of differential
pulse height spectra always involves areas under the spectrum between two given limits of
pulse height. The value of the ordinate itself (dN/dH) has no physical significance until
multiplied by an increment of the abscissa H.

A less common way of displaying the same information about the distribution of pulse
amplitudes is through the integral pulse height distribution. Figure 4.2b shows the integral dis-
tribution for the same pulse source displayed as a differential spectrum in Fig. 4.2a. The abscis-
sa in the integral case is the same pulse height scale shown for the differential
distribution. The ordinate now represents the number of pulses whose amplitude exceeds that
of a given value of the abscissa H. The ordinate N must always be a monotonically decreasing
function of H because fewer and fewer pulses will lie above an amplitude A that is allowed to
increase from zero. Because all pulses have some finite amplitude, the value of the integral
spectrum at H = 0 must be the total number of pulses observed (). The value of the inte-
gral distribution must decrease to zero at the maximum observed pulse height (H5).
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Figure 4.2 Examples of differential and integral pulse height spectra
for an assumed source of pulses.
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The differential and integral distributions convey exactly the same information and
one can be derived from the other. The amplitude of the differential distribution at any
pulse height H is given by the absolute value of the slope of the integral distribution at the
same value. Where peaks appear in the differential distribution, such as H,, local maxima
will occur in the magnitude of the slope of the integral distribution. On the other hand,
where minima appear in the differential spectrum, such as Hs, regions of minimum magni-
tude of the slope are observed in the integral distribution. Because it is easier to display
subtle differences by using the differential distribution, it has become the predominant
means of displaying pulse height distribution information.

IV. COUNTING CURVES AND PLATEAUS

When radiation detectors are operated in pulse counting mode, a common situation often
atises in which the pulses from the detector are fed to a counting device with a fixed dis-
crimination level. Signal pulses must exceed a given level H in order to be registered by
the counting circuit. Sometimes it is possible to vary the level H,during the course of the
measurement to provide information about the amplitude distribution of the pulses.
Assuming that H ;can be varied between 0 and Hj in Fig. 4.2, a series of measurements can
be carried out in which the number of pulses N per unit time is measured as H, is changed
through a sequence of values between 0 and Hs. This series of measurements is just an
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experimental determination of the integral pulse height distribution, and the measured
counts should lie directly on the curve shown in Fig. 4.2b.

In setting up a pulse counting measurement, it is often desirable to establish an oper-
ating point that will provide maximum stability over long periods of time. For example,
small drifts in the value of H, could be expected in any real application, and one would
like to establish conditions under which these drifts would have minimal influence on the
measured counts. One such stable operating point can be achieved at a discrimination
point set at the level H; in Fig. 4.2. Because the slope of the integral distribution is a mini-
mum at that point, small changes in the discrimination level will have minimum impact on
the total number of pulses recorded. In general, regions of minimum slope on the integral
distribution are called counting plateaus and represent areas of operation in which mini-
mum sensitivity to drifts in discrimination level are achieved. It should be noted that
plateaus in the integral spectrum correspond to valleys in the differential distribution.

Plateaus in counting data can also be observed with a different procedure. For a par-
ticular radiation detector it is often possible to vary the gain or amplification provided for
the charge produced in radiation interactions. This variation could be accomplished by
varying the amplification factor of a linear amplifier between the detector and counting
circuit, or in many cases more directly by changing the applied voltage to the detector itself.
Figure 4.3 shows the differential pulse height distribution corresponding to three different
values of voltage gain applied to the same source of pulses. Here the value of gain can be
defined as the ratio of the voltage amplitude for a given event in the detector to the same
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Figure 4.3 Example of a counting curve generated by varying gain under constant
source conditions. The three plots at the top give the corresponding differential pulse
height spectra.
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amplitude before some parameter (such as amplification or detector voltage) was changed.
The highest voltage gain will result in the largest maximum pulse height, but in all cases the
area under the differential distribution will be a constant. In the example shown in Fig. 4.3,
no counts will be recorded for a gain G = 1 because under those conditions all pulses will
be smaller than H ;. Pulses will begin to be recorded somewhere between a gain G = 1 and
G = 2. An experiment can be carried out in which the number of pulses recorded is meas-
ured as a function of the gain applied, sometimes called the counting curve. Such a plot is
also shown in Fig. 4.3 and in many ways resembles an integral pulse height distribution. We
now have a mirror image of the integral distribution, however, because small values of the
gain will record no pulses, whereas large values will result in counting nearly all the pulses.
Again, plateaus can be anticipated in this counting curve for values of the gain in which the
effective discrimination pulse height H, passes through minima in the differential pulse
height distribution. In the example shown in Fig. 4.3, the minimum slope in the counting
curve should correspond to a gain of about 3, in which case the discrimination point is near
the minimum of the valley in the differential pulse height distribution.

In some types of radiation detectors, such as Geiger-Mueller tubes or scintillation
counters, the gain can conveniently be varied by changing the applied voltage to the detec-
tor. Although the gain may not change linearly with voltage, the qualitative features of the
counting curve can be traced by a simple measurement of the detector counting rate as a
function of voltage. In order to select an operating point of maximum stability, plateaus are
again sought in the counting curve that results, and the voltage is often selected to lie at a
point of minimum slope on this counting curve. We shall discuss these plateau measure-
ments more specifically in Chapters 6 and 7 in connection with proportional counters and
Geiger-Mueller detectors.

V. ENERGY RESOLUTION

In many applications of radiation detectors, the object is to measure the energy distribu-
tion of the incident radiation. These efforts are classified under the general term radiation
spectroscopy, and later chapters give examples of the use of specific detectors for spec-
troscopy involving alpha particles, gamma rays, and other types of nuclear radiation. At this
point we discuss some general properties of detectors when applied to radiation spec-
troscopy and introduce some definitions that will be useful in these discussions.

One important property of a detector in radiation spectroscopy can be examined by
noting its response to a monoenergetic source of that radiation. Figure 4.4 illustrates the
differential pulse height distribution that might be produced by a detector under these
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Figure 4.4 Examples of response functions for detectors with relatively
good resolution and relatively poor resolution.
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conditions. This distribution is called the response function of the detector for the energy
used in the determination. The curve labeled “Good resolution” illustrates one possible
distribution around an average pulse height H|,. The second curve, labeled “Poor resolu-
tion,” illustrates the response of a detector with inferior performance. Provided the same
number of pulses are recorded in both cases, the areas under each peak are equal.
Although both distributions are centered at the same average value H), the width of the
distribution in the poor resolution case is much greater. This width reflects the fact that a
large amount of fluctuation was recorded from pulse to pulse even though the same ener-
gy was deposited in the detector for each event. If the amount of these fluctuations is made
smaller, the width of the corresponding distribution will also become smaller and the peak
will approach a sharp spike or a mathematical delta function. The ability of a given meas-
urement to resolve fine detail in the incident energy of the radiation is obviously improved
as the width of the response function (illustrated in Fig. 4.4) becomes smaller and smaller.

A formal definition of detector energy resolution is shown in Fig. 4.5. The differential
pulse height distribution for a hypothetical detector is shown under the same assumption
that only radiation for a single energy is being recorded. The full width at half maximum

(FWHM) is illustrated in the figure and is defined as the width of the distribution at a level
that is just half the maximum ordinate of the peak. This definition assumes that any back-
ground or continuum on which the peak may be superimposed is negligible or has been
subtracted away. The energy resolution of the detector is conventionally defined as the
FWHM divided by the location of the peak centroid H,,. The energy resolution R is thus a
dimensionless fraction conventionally expressed as a percentage. Semiconductor diode
detectors used in alpha spectroscopy can have an energy resolution less than 1%, whereas
scintillation detectors used in gamma-ray spectroscopy normally show an energy resolu-
tion in the range of 5-10%. It should be clear that the smaller the figure for the energy res-
olution, the better the detector will be able to distinguish between two radiations whose
energies lie near each other. An approximate rule of thumb is that one should be able to
resolve two energies that are separated by more than one value of the detector FWHM.

There are a number of potential sources of fluctuation in the response of a given detec-
tor that result in imperfect energy resolution. These include any drift of the operating char-
acteristics of the detector during the course of the measurements, sources of random noise
within the detector and instrumentation system, and statistical noise arising from the dis-
crete nature of the measured signal itself. The third source is in some sense the most impor-
tant because it represents an irreducible minimum amount of fluctuation that will always
be present in the detector signal no matter how perfect the remainder of the system is
made. In a wide category of detector applications, the statistical noise represents the dom-
inant source of fluctuation in the signal and thus sets an important limit on detector
performance.

The statistical noise arises from the fact that the charge Q generated within the detec-
tor by a quantum of radiation is not a continuous variable but instead represents a discrete
number of charge carriers. For example, in an ion chamber the charge carriers are the ion
pairs produced by the passage of the charged particle through the chamber, whereas in a
scintillation counter they are the number of electrons collected from the photocathode of
the photomultiplier tube. In all cases the number of carriers is discrete and subject to ran-
dom fluctuation from event to event even though exactly the same amount of energy is
deposited in the detector.

An estimate can be made of the amount of inherent fluctuation by assuming that the
formation of each charge carrier is a Poisson process. Under this assumption, if a total num-
ber N of charge carriers is generated on the average, one would expect a standard devia-
tion of VN to characterize the inherent statistical fluctuations in that number [see Eq.
(3.29)). If this were the only source of fluctuation in the signal, the response function, as
shown in Fig. 4.5, should have a Gaussian shape, because N is typically a large number. In
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Figure 4.5 Definition of detector resolution. For peaks whose shape is
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this case, the Gaussian function introduced in the previous chapter is most conveniently
written

A (H - Hy)?
G(H) = oV2r e%P (_ 202 )

The width parameter o determines the FWHM of any Gaussian through the relation
FWHM = 2.350. (The remaining two parameters, H; and A, represent the centroid and
area, respectively.)

The response of many detectors is approximately linear, so that the average pulse
amplitude Hy = KN, where K is a proportionality constant. The standard deviation o of the
peak in the pulse height spectrum is then o = KVN and its FWHM is 2.35KVN. We then
would calculate a limiting resolution R due only to statistical fluctuations in the number of
charge carriers as

(4.12)

_FWHM 235KVN 235
Rlpoisson limit = H, KN VN

Note that this limiting value of R depends only on the number of charge carriers N, and
the resolution improves (R will decrease) as N is increased. From Eq. (4.13) we see that in
order to achieve an energy resolution better than 1%, one must have N greater than 55,000.
An ideal detector would have as many charge carriers generated per event as possible, so
that this limiting resolution would be as small a percentage as possible. The great populari-
ty of semiconductor detectors stems from the fact that a very large number of charge carri-
ers are generated in these devices per unit energy lost by the incident radiation.

Careful measurements of the energy resolution of some types of radiation detectors
have shown that the achievable values for R can be lower by a factor as large as 3 or 4 than
the minimum predicted by the statistical arguments given above. These results would indi-
cate that the processes that give rise to the formation of each individual charge carrier are
not independent, and therefore the total number of charge carriers cannot be described by
simple Poisson statistics. The Fano factor has been introduced in an attempt to quantify the
departure of the observed statistical fluctuations in the number of charge carriers from
pure Poisson statistics and is defined as

(4.13)

observed variance in N

F=— - - (4.14)
Poisson predicted variance (= N)
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Because the variance is given by o2, the equivalent expression to Eq. (4.13) is now

235KVNVF F
Riuisicatims =~ v = 235\ % (4.15)

Although the Fano factor is substantially less than unity for semiconductor diode detectors and
proportional counters, other types such as scintillation detectors appear to show a limiting res-
olution consistent with Poisson statistics and the Fano factor would, in these cases, be unity.

Any other source of fluctuations in the signal chain will combine with the inherent sta-
tistical fluctuations from the detector to give the overall energy resolution of the measur-
ing system. It is sometimes possible to measure the contribution to the overall FWHM due
to a single component alone. For example, if the detector is replaced by a stable pulse gen-
erator, the measured response of the remainder of the system will show a fluctuation due
primarily to electronic noise. If there are several sources of fluctuation present and each is
symmetric and independent, statistical theory predicts that the overall response function
will always tend toward a Gaussian shape, even if the individual sources are characterized
by distributions of different shape. As a result, the Gaussian function given in Eq. (4.12) is
widely used to represent the response function of detector systems in which many differ-
ent factors may contribute to the overall energy resolution. Then the total FWHM will be
the quadrature sum of the FWHM values for each individual source of fluctuation:

(FWHM)czsverall = (FWHM)ztatistical + (FWHM)rzmise + (FWHM)czirift T
Each term on the right is the square of the FWHM that would be observed if all other
sources of fluctuation were zero.

VL. DETECTION EFFICIENCY

All radiation detectors will, in principle, give rise to an output pulse for each quantum of
radiation that interacts within its active volume. For primary charged radiation such as
alpha or beta particles, interaction in the form of ionization or excitation will take place
immediately upon entry of the particle into the active volume. After traveling a small frac-
tion of its range, a typical particle will form enough ion pairs along its path to ensure that
the resulting pulse is large enough to be recorded. Thus, it is often easy to arrange a situa-
tion in which a detector will see every alpha or beta particle that enters its active volume.
Under these conditions, the detector is said to have a counting efficiency of 100%.

On the other hand, uncharged radiations such as gamma rays or neutrons must first
undergo a significant interaction in the detector before detection is possible. Because these
radiations can travel large distances between interactions, detectors are often less than
100% efficient. It then becomes necessary to have a precise figure for the detector effi-
ciency in order to relate the number of pulses counted to the number of neutrons or pho-
tons incident on the detector.

It is convenient to subdivide counting efficiencies into two classes: absolute and intrin-
sic. Absolute efficiencies are defined as

number of pulses recorded

- 4.16
abs number of radiation quanta emitted by source (4.16)

and are dependent not only on detector properties but also on the details of the counting
geometry (primarily the distance from the source to the detector). The intrinsic efficiency
is defined as

number of pulses recorded

€int = — — (4.17)
number of radiation quanta incident on detector
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and no longer includes the solid angle subtended by the detector as an implicit factor. The
two efficiencies are simply related for isotropic sources by €, = €, - (4n/Q), where Q is
the solid angle of the detector seen from the actual source position. It is much more con-
venient to tabulate values of intrinsic rather than absolute efficiencies because the geo-
metric dependence is much milder for the former. The intrinsic efficiency of a detector usu-
ally depends primarily on the detector material, the radiation energy, and the physical
thickness of the detector in the direction of the incident radiation. A slight dependence on
distance between the source and the detector does remain, however, because the average
path length of the radiation through the detector will change somewhat with this spacing.

Counting efficiencies are also categorized by the nature of the event recorded. If we
accept all pulses from the detector, then it is appropriate to use total efficiencies. In this case
all interactions, no matter how low in energy, are assumed to be counted. In terms of a hypo-
thetical differential pulse height distribution shown in Fig. 4.6, the entire area under the
spectrum is a measure of the number of all pulses that are recorded, regardless of amplitude,
and would be counted in defining the total efficiency. In practice, any measurement system
always imposes a requirement that pulses be larger than some finite threshold level set to
discriminate against very small pulses from electronic noise sources. Thus, one can only
approach the theoretical total efficiency by setting this threshold level as low as possible.
The peak efficiency, however, assumes that only those interactions that deposit the full ener-
gy of the incident radiation are counted. In a differential pulse height distribution, these full
energy events are normally evidenced by a peak that appears at the highest end of the spec-
trum. Events that deposit only part of the incident radiation energy then will appear farther
to the left in the spectrum. The number of full energy events can be obtained by simply inte-
grating the total area under the peak, which is shown as the cross-hatched area in Fig. 4.6.
The total and peak efficiencies are related by the peak-to-total ratio r

Epeak
’ €total (4.18)
which is sometimes tabulated separately. It is often preferable from an experimental stand-
point to use only peak efficiencies, because the number of full energy events-is not sensi-
tive to some perturbing effects such as scattering from surrounding objects or spurious
noise. Therefore, values for the peak efficiency can be compiled and universally applied to
a wide variety of laboratory conditions, whereas total efficiency values may be influenced
by variable conditions.
To be complete, a detector efficiency should be specified according to both of the
above criteria. For example, the most common type of efficiency tabulated for gamma-ray
detectors is the intrinsic peak efficiency.

’Full—energy
peak "’

AN
H

Figure 4.6 Example of the full-energy peak in a differential puise height spectrum.
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A detector with known efficiency can be used to measure the absolute activity of a
radioactive source. In the following discussion, we assume that a detector with an intrinsic
peak efficiency €, has been used to record N events under the full energy peak in the
detector spectrum. For simplicity, we also assume that the source emits radiation isotropi-
cally and that no attenuation takes place between the source and detector. From the defi-
nition of intrinsic peak efficiency, the number of radiation quanta S emitted by the source
over the measurement period is then given by

4n
eipﬂ
where () represent the solid angle (in steradians) subtended by the detector at the source

position. The solid angle is defined by an integral over the detector surface that faces the
source, of the form

S=N (4.19)

cos a
Q= dA (4.20)
4 r?

where r represents the distance between the source and a surface element dA, and o is the
angle between the normal to the surface element and the source direction. If the volume
of the source is not negligible, then a second integration must be carried out over all vol-
ume elements of the source. For the common case of a point source located along the axis
of a right circular cylindrical detector, £} is given by

d
Q=2 (1 - W) (4.21)

where the source-detector distance d and detector radius a are shown in the sketch below:

For d >> a, the solid angle reduces to the ratio of the detector plane frontal area A visible
at the source to the square of the distance:

wa?
dz

A
o=— (4.22)

Another commonly encountered circumstance, shown in the sketch below, involves a uni-
form circular disk source emitting isotropic radiation aligned with a circular disk detector,
both positioned perpendicular to a common axis passing through their centers:

s
o [[E
U

Source

Detector



Chapter 4 Dead Time 119

In terms of the dimensions shown on the sketch, it can be shown? that the effective solid
angle averaged over the surface of the source is given by solving the integral

4ma [ exp(—dk)J,(sk)J,(ak)
. dk
0

Q:

S

where the J;(x) are Bessel functions of x. This integral does not have an analytic solution,
so it can only be solved using numerical techniques. A useful approximate solution is

Q=2n [1 U S u3[F2]]
T+ 8 (1+p)"
ploo_ P ¥ _F
16 (1+B)2 16 (1 + B)72
35 B 315 B2 1155 g3

=— -— +
128 (1+B)?2 256 (1 + )12 1024 (1 + p)13~2

< o6

This approximation becomes inaccurate when the source or detector diameters become
too large compared with their spacing, but it has been shown’ to give very accurate results
over a wide range of dimensions.

Published values for £ can sometimes be found for more complicated geometric
arrangements involving off-axis or volumetric sources, or detectors with more complex
shapes. Some specific examples of data or descriptions of algorithms useful in solid angle
computations are given in Refs. 6-15.

where

VII. DBEAD TIME

In nearly all detector systems, there will be a minimum amount of time that must separate
two events in order that they be recorded as two separate pulses. In some cases the limit-
ing time may be set by processes in the detector itself, and in other cases the limit may arise
in the associated electronics. This minimum time separation is usually called the dead time
of the counting system. Because of the random nature of radioactive decay, there is always
some probability that a true event will be lost because it occurs too quickly following a pre-
ceding event. These “dead time losses” can become rather severe when high counting rates
are encountered, and any accurate counting measurements made under these conditions
must include some correction for these losses. In this section we discuss some simple mod-
els of dead time behavior of counting systems, together with two experimental methods of
determining system dead time. Ref. 16 is an excellent presentation of more detailed analy-
ses of related topics that are beyond the present scope.

Models for Dead Time Behavior

Two models of dead time behavior of counting systems have come into common usage:
paralyzable and nonparalyzable response. These models represent idealized behavior, one
or the other of which often adequately resembles the response of a real counting system.
The fundamental assumptions of the models are illustrated in Fig. 4.7. At the center of the
figure, a time scale is shown on which six randomly spaced events in the detector are indi-
cated. At the bottom of the figure is the corresponding dead time behavior of a detector
assumed to be nonparalyzable. A fixed time 7 is assumed to follow each true event that
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-
Eﬁd — l_z\__] r"ﬁ"l—j Paralyzable

] |
A 1A W

Events in detector Time ——>

e
—1

Dead
Live

I ] | 11 | Nonparalyzable

Figure 4.7 Illustration of two assumed models of dead time behav-
ior for radiation detectors.

occurs during the “live period” of the detector. True events that occur during the dead peri-
od are lost and assumed to have no effect whatsoever on the behavior of the detector. In
the example shown, the nonparalyzable detector would record four counts from the six
true interactions. In contrast, the behavior of a paralyzable detector is shown along the top
line of Fig.4.7. The same dead time 7 is assumed to follow each true interaction that occurs
during the live period of the detector. True events that occur during the dead period, how-
ever, although still not recorded as counts, are assumed to extend the dead time by
another period 7 following the lost event. In the example shown, only three counts are
recorded for the six true events.

The two models predict the same first-order losses and differ only when true event
rates are high. They are in some sense two extremes of idealized system behavior, and real
counting systems will often display a behavior that is intermediate between these extremes.
The detailed behavior of a specific counting system may depend on the physical processes
taking place in the detector itself or on delays introduced by the pulse processing and
recording electronics.

In the discussion that follows, we examine the response of a detector system to a
steady-state source of radiation, and we adopt the following definitions:

n = true interaction rate

m = recorded count rate

7 = system dead time

We assume that the counting time is long so that both n and m may be regarded as aver-
age rates. In general, we would like to obtain an expression for the true interaction rate n
as a function of the measured rate m and the system dead time =, so that appropriate cor-
rections can be made to measured data to account for the dead time losses.

In the nonparalyzable case, the fraction of all time that the detector is dead is given
simply by the product mr. Therefore, the rate at which true events are lost is simply n#er.
But because n — m is another expression for the rate of losses,

n—m = nmr (4.23)
Solving for n, we obtain
. m Nonparalyzable
n= 1 —mr model (424)

In the paralyzable case, dead periods are not always of fixed length, so we cannot apply
the same argument. Instead, we note that rate m is identical to the rate of occurrences of
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time intervals between true events which exceed 1. The distribution of intervals between
random events occurring at an average rate n was previously shown [Eq. (3.71)] to be
P(T)dT = ne "7 dT (4.25)

where P;(T) dT is the probability of observing an interval whose length lies within dT about T.
The probability of intervals larger than 7 can be obtained by integrating this distribution
between T and o«

Py(r) = f P(T)dT = e (4.26)

The rate of occurrence of such intervals is then obtained by simply multiplying the above
expression by the true rate n

Paralyzable (4.27)

m=ne "7
model

The paralyzable model leads to a more cumbersome result because we cannot solve explic-
itly for the true rate n. Instead, Eq. (4.27) must be solved iteratively if # is to be calculated
from measurements of m and knowledge of . '

A plot of the observed rate m versus the true rate n is given in Fig. 4.8 for both models.
When the rates are low the two models give virtually the same result, but the behavior at
high rates is markedly different. A nonparalyzable system will approach an asymptotic value
for the observed rate of 1 /'r, which represents the situation in which the counter barely has
time to finish one dead period before starting another. For paralyzable behavior, the
observed rate is seen to go through a maximum. Very high true interaction rates result in a
multiple extension of the dead period following an initial recorded count, and very few true
events can be recorded. One must always be careful when using a counting system that may
be paralyzable to ensure that ostensibly low observed rates actually correspond to low inter-
action rates rather than very high rates on the opposite side of the maximum. Mistakes in
the interpretation of nuclear counting data from paralyzable systems have occurred in the
past by overlooking the fact that there are always two possible true interaction rates corre-
sponding to a given observed rate. As shown in Fig. 4.8, the observed rate m; can correspond

m
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mn 17 ny n

Figure 4.8 Variation of the observed rate m as a function of the true rate n for two
models of dead time losses. ‘
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to either true rates n, or n,.The ambiguity can be resolved only by changing the true rate in
a known direction while observing whether the observed rate increases or decreases.
For low rates (n << 1 / 7) the following approximations can be written :

n
Nonparalyzable m= =pn(l — n) (4.28)
1+ nr

Paralyzable m = ne " = n(l — nr) (4.29)

Thus, the two models lead to identical results in the limit of small dead time losses.

If possible, one should avoid measurement conditions under which dead time losses are
high because of the errors that inevitably occur in making corrections for the losses. The
value of r may be uncertain or subject to variation, and the system behavior may not follow
exactly either of the models described above. When losses are greater than 30 or 40%, the
calculated true rate becomes very sensitive to small changes in the measured rate and the
assumed system behavior. Instead, the user should seek to reduce the losses by changing the
conditions of the measurement or by choosing a counting system with smaller dead time.

B. Methods of Dead Time Measurement

In order to make dead time corrections using either model, prior knowledge of the dead
time 1 is required. Sometimes this dead time can be associated with a known limiting prop-
erty of the counting system (e.g,, a fixed resolving time of an electronic circuit). More often,
the dead time will not be known or may vary with operating conditions and must therefore
be measured directly. Common measurement techniques are based on the fact that the
observed rate varies nonlinearly with the true rate. Therefore, by assuming that one of the
specific models is applicable, and by measuring the observed rate for at least two different
true rates that differ by a known ratio, the dead time can be calculated.

The common example is the two-source method. The method is based on observing the
counting rate from two sources individually and in combination. Because the counting loss-
es are nonlinear, the observed rate due to the combined sources will be less than the sum
of the rates due to the two sources counted individually, and the dead time can be calcu-
lated from the discrepancy.

To illustrate the method, let n,, n,, and n,, be the true counting rates (sample plus
background) with source 1, source 2, and the combined sources, respectively, in place. Let
m;, m,, and m,, represent the corresponding observed rates. Also, let n, and m,, be the true
and measured background rates with both sources removed. Then

Ny —ny = (n; —ny) + (ny, — ny) (4.30)
Rty =n+m,
Now assuming the nonparalyzable model [Eq. (4.24)] and substituting, we obtain
v U’ my m,

l=mpr 1-—myr 1-myr  1—myr

Solving this equation explicitly for 7 gives the following result:
X1-VvV1-2)
B Y

X =mm, — mymy,

T (4.32)

where

Y = mumy(my, + my) — mymy,(my + my)
_ Y(my + my —my; — my)
= P




